Inheritance and linkage of metabolism-based herbicide cross-resistance in rigid ryegrass (Lolium rigidum)

Weed Science ◽  
2003 ◽  
Vol 51 (1) ◽  
pp. 4-12 ◽  
Author(s):  
Christopher Preston
Weed Science ◽  
1995 ◽  
Vol 43 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Fiona M. McAlister ◽  
Joseph A. M. Holtum ◽  
Stephen B. Powles

Thirteen biotypes of rigid ryegrass were screened for trifluralin resistance. From these, the two most resistant biotypes, SLR 31 and SLR 10, were chosen for further studies involving exposure to other dinitroanilines, mitosis-inhibiting herbicides and14C-trifluralin. SLR 31, and SLR 10 exhibited an approximate 10-fold reduced sensitivity to trifluralin in comparison to susceptible biotypes. Resistance to five other dinitroaniline herbicides was observed, with reduced sensitivity varying from 32-fold for ethalfluralin to 2.5-fold for isopropalin. The resistance in rigid ryegrass to other herbicides and drugs that affect mitosis were tested. Resistance comparable to that of trifluralin was recorded for the herbicides terbutol and DCPA, while low levels of cross-resistance to amiprophosmethyl was present. Trifluralin affected mitotic indices at a much lower level in the susceptible biotypes than in the resistant biotypes. No differences in the uptake and translocation of14C-trifluralin were observed between resistant and susceptible biotypes. Most of the14C detected in the plant material was in the root tissue. A small level of14C was detected in the seeds, and no substantial increases were noted in coleoptile tissue. The resistance spectra in SLR 31 and SLR 10 were phenotypically similar to those occurring in an intermediate trifluralin-resistant goosegrass and trifluralin-resistant green foxtail.


Weed Science ◽  
2021 ◽  
pp. 1-6
Author(s):  
David J. Brunton ◽  
Gurjeet Gill ◽  
Christopher Preston

Abstract Three resistant (R) rigid ryegrass (Lolium rigidum Gaudin) populations from southern Australia (EP162, 375-14, and 198-15) with cross-resistance to thiocarbamate, chloroacetamide, and sulfonylisoxazoline herbicides displayed reduced sensitivity to the isoxazolidinone herbicides bixlozone and clomazone. Each of these R populations was exposed to two cycles of recurrent selection (RS) in which plants were treated with the field rate of bixlozone, survivors were bulk crossed, and seed was collected. After the first cycle of recurrent selection (RS1), the LD50 to bixlozone in population 198-15 increased to 17.5-fold compared with the S population and increased further to 26.9-fold after a second cycle of recurrent selection (RS2). The recurrent selection process also increased the level of resistance to bixlozone in populations EP162 and 375-14 (7.8- to 18.4-fold) compared with the S population. Phorate antagonized bixlozone and clomazone in SLR4 (34.6- and 28.1-fold increase in LD50) and both herbicides in populations EP162 (36.5- to 46.6-fold), 375-14 (71.4- to 73.9-fold), and 198-15 (86.4- to 91.5-fold) compared with the absence of phorate. The increase in LD50 of all L. rigidum RS populations when treated with phorate suggests a lack of herbicide activation is not the likely resistance mechanism to these herbicides. This research highlights the elevated risk of thiocarbamate-resistant L. rigidum populations to rapidly evolve resistance to the isoxazolidinone herbicides bixlozone and clomazone.


Weed Science ◽  
1994 ◽  
Vol 42 (3) ◽  
pp. 369-377 ◽  
Author(s):  
Michael W. M. Burnet ◽  
Quentin Hart ◽  
Joseph A. M. Holtum ◽  
Stephen B. Powles

Rigid ryegrass population VLR69 has become resistant to nine classes of herbicides after 21 yr of exposure to five herbicides in five different chemical classes. The population was exposed to diuron in 17 seasons and is resistant to diuron (4 fold) and chlorotoluron (8 fold) when compared with a reference susceptible population (VLR1). VLR69 had six seasons of exposure to chlorsulfuron and exhibits a high level of resistance to chlorsulfuron (> 20 fold) and triasulfuron (> 25 fold) and a lesser change in sensitivity to sulfometuron (7 fold); however, 4% of the population has a high level of resistance to sulfometuron. Resistance to atrazine (5 fold), simazine (6 fold), and ametryn (10 fold) was observed after five seasons of exposure to atrazine. There is a high level of resistance to all aryloxyphenoxypropionate herbicides after only two exposures to diclofop eight generations prior to testing the population. The population was cross-resistant to tralkoxydim (> 9.5 fold) and sethoxydim (1.8 fold). There was a small change in sensitivity to paraquat (1.4 fold) after three generations of exposure. The population displayed cross-resistance to: imazaquin (7 fold), imazapyr (2.5 fold), metribuzin (8.7 fold), and metolachlor (2 fold) but was susceptible to oxyfluorfen and dinitroaniline herbicides. There was also a small shift in sensitivity to tridiphane (1.6 fold).


Weed Science ◽  
1994 ◽  
Vol 42 (2) ◽  
pp. 153-157 ◽  
Author(s):  
Michael W. M. Burnet ◽  
Andrew R. Barr ◽  
Stephen B. Powles

Metolachlor has been evaluated both as a herbicide for use in cultivated oats (Avena sativaL.) and for its potential as an alternative herbicide for the control of herbicide-resistant rigid ryegrass. Eight herbicide-resistant and two susceptible biotypes of rigid ryegrass were tested for their susceptibility to metolachlor. Response to metolachlor was determined both in soil and an agar germination medium. The LD50for metolachlor in agar for a susceptible biotype (VLR1) was 0.13 μM. Five biotypes, SLR5 (6.9 fold), SLR31 (5.2 fold), SLR10 (2.5 fold), NLR12 (2.1 fold) and VLR69 (1.9 fold), were cross-resistant to metolachlor when compared with VLR1. Relative response of the biotypes was similar in both soil and agar, validating the use of an agar germination test to determine the susceptibility of rigid ryegrass biotypes to metolachlor. Biotypes cross-resistant to metolachlor also were cross-resistant to alachlor (SLR5 6.7 fold, SLR31 5.9 fold, SLR10 2.4 fold, and VLR69 1.6 fold with the LD50for VLR1 being 0.49 μM) and propachlor (SLR57.2 fold, SLR31 7.2 fold, SLR10 3.0 fold and VLR69 2.5 fold with the LD50for VLR1 being 0.47 μM) indicating that cross-resistance extends to other members of the chloroacetamide group. Cross-resistance to chloroacetamides was observed in biotypes that previously had been reported as cross-resistant to other herbicides. In contrast, biotypes with limited herbicide histories were generally not cross-resistant to metolachlor. These results indicate that there is a high probability of chloroacetamide cross-resistance in populations of herbicide-resistant rigid ryegrass.


Weed Science ◽  
1998 ◽  
Vol 46 (5) ◽  
pp. 604-607 ◽  
Author(s):  
Stephen B. Powles ◽  
Debrah F. Lorraine-Colwill ◽  
James J. Dellow ◽  
Christopher Preston

Following 15 yr of successful use, glyphosate failed to control a population of the widespread grass weed rigid ryegrass in Australia. This population proved to be resistant to glyphosate in pot dose-response experiments conducted outdoors, exhibiting 7- to 11-fold resistance when compared to a susceptible population. Some cross-resistance to diclofop-methyl (about 2.5-fold) was also observed. Similar levels of control of the resistant and susceptible populations were obtained following application of amitrole, chlorsulfuron, fluazifop-P-butyl, paraquat, sethoxydim, sirnazine, or tralkoxydim. The presence of glyphosate resistance in a major weed species indicates a need for changes in glyphosate use patterns.


Weed Science ◽  
2018 ◽  
Vol 66 (5) ◽  
pp. 581-585 ◽  
Author(s):  
David J. Brunton ◽  
Peter Boutsalis ◽  
Gurjeet Gill ◽  
Christopher Preston

AbstractA population of rigid ryegrass (Lolium rigidumGaudin) from a field on the Eyre Peninsula, South Australia, was suspected of resistance to thiocarbamate herbicides. Dose–response studies were conducted on this population (EP162) and two susceptible populations (SLR4 and VLR1). The resistant population exhibited cross-resistance to triallate, prosulfocarb, EPTC, and thiobencarb with higher LD50to triallate (14.9-fold), prosulfocarb (9.4-fold), EPTC (9.7-fold), and thiobencarb (13.6-fold) compared with the susceptible populations SLR4 and VLR1. The resistant population also displayed resistance to trifluralin, pyroxasulfone, and propyzamide. The LD50of the resistant population was higher for trifluralin (13.8-fold), pyroxasulfone (8.1-fold), and propyzamide (2.7-fold) compared with the susceptible populations. This study documents the first case of field-evolved resistance to thiocarbamate herbicides inL. rigidum.


Weed Science ◽  
2021 ◽  
pp. 1-19
Author(s):  
David J. Brunton ◽  
Peter Boutsalis ◽  
Gurjeet Gill ◽  
Christopher Preston

Abstract Populations of rigid ryegrass (Lolium rigidum Gaudin) from southern Australia have evolved resistance to the thiocarbamate herbicide prosulfocarb. The inheritance of prosulfocarb resistance was explored by crossing R and S individuals. In all families within each cross, except 16.2, the response of the F1 were intermediate between the parents, suggesting that resistance is inherited as a single, partially dominant trait. For 16.2, the response of the F1 was more similar to the susceptible parent, suggesting resistance may be a recessive trait in this population. Segregation at the discriminating dose of 1200 g a.i. ha−1 prosulfocarb in populations 375-14 fitted the ratio (15:1) consistent with two independent dominant alleles; 198-15 fitted a ratio (13:3) for two independent alleles, one dominant and one recessive; and EP162 fitted a ratio (9:7) for two additive dominant alleles. In contrast segregation of population 16.2 fitted a (7:9) ratio consistent with two independent recessive alleles contributing to prosulfocarb resistance. Four different patterns of resistance to prosulfocarb were identified in different resistant populations, with inheritance as a dominant allele, dominant and recessive, additive dominant and as an independent recessive allele. This suggests there are several different mechanisms of prosulfocarb resistance present in L. rigidum.


1990 ◽  
Vol 94 (3) ◽  
pp. 1180-1186 ◽  
Author(s):  
John M. Matthews ◽  
Joseph A. M. Holtum ◽  
David R. Liljegren ◽  
Barbara Furness ◽  
Stephen B. Powles

Weed Science ◽  
2005 ◽  
Vol 53 (5) ◽  
pp. 615-619 ◽  
Author(s):  
Marulak Simarmata ◽  
Suleiman Bughrara ◽  
Donald Penner

Glyphosate resistance was found in a rigid ryegrass population in northern California. A sample of the resistant plants were collected and grown under greenhouse conditions. The objective of this study was to evaluate glyphosate resistance in the progeny of the collected plants by recurrent selection, obtain the homozygous resistant and sensitive lines to establish dose-response curves, and to determine the inheritance of glyphosate resistance in rigid ryegrass. Diverse levels of resistance were observed in the first generation with survival of 89, 59, 45, and 9% from glyphosate at 1x, 2x, 4x, and 8x respectively, where x = 1.12 kg ha−1isopropylamine salt of glyphosate. Clones of plants that died from 1x were allowed to produce seed and were further subjected to recurrent selection to generate the most sensitive plants (S lines), which died from 0.125x glyphosate. The most resistant plants (R lines) were generated from the survivors receiving 8x glyphosate. The ratio between I50rates for the glyphosate resistant and the glyphosate sensitive plants was > 100-fold. The R and S lines were crossed reciprocally and F1progeny of both (R × S) and (S × R) showed intermediate resistance. These survived up to 2x glyphosate. The F2progeny were generated by intercrossing of F1plants. The ratio of sensitive, intermediate, and resistant plants in the F2population before the treatment of glyphosate at 0.125x followed by 8x was 1 : 16, 14 : 16, and 1 : 16 respectively, which corresponded to the Mendelian segregation ratio of two genes. The results indicated that the inheritance of glyphosate resistance in rigid ryegrass from California appeared to be nuclear, incompletely dominant, multigenic, and pollen-transmitted with no indication of maternal inheritance.


Sign in / Sign up

Export Citation Format

Share Document